Intrinsic and Synaptic Long-Term Depression of NTS Relay of Nociceptin-Sensitive and Capsaicin-Sensitive Cardiopulmonary Afferents Hyperactivity
نویسندگان
چکیده
synaptic long-term depression of NTS relay of nociceptin-and capsaicin-sensitive cardiopulmonary afferents hyperactivity. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. ABSTRACT The nucleus tractus solitarius (NTS) in the caudal medulla is a gateway for a variety of cardiopulmonary afferents important for homeostatic regulation and defense against airway and cardiovascular insults, and is a key central target potentially mediating the response habituation to these inputs. Here, whole-cell and field population action potential recordings and infrared imaging in rat brainstem slices in vitro revealed a compartmental pain-pathway-like organization of capsaicin-facilitated vs. nocistatin-facilitated/nociceptin-suppressed neuronal clusters in an NTS region which receives cardiopulmonary A-and C-fiber afferents with differing capsaicin sensitivities. All capsaicin-sensitive neurons and a fraction of nociceptin-sensitive neurons expressed NMDA receptor-dependent synaptic long-term depression (LTD) following afferent stimulation. All neurons also expressed activity-dependent decrease of excitability (intrinsic LTD), which converted to NMDA receptor-dependent intrinsic long-term potentiation after GABA A receptor blockade. Thus, distinct intrinsic and synaptic LTD mechanisms in the NTS specific to the relay of A-or C-fiber afferents may underlie the response habituation to persistent afferents hyperactivity that are associated with varying physiologic challenges and cardiopulmonary derangements — including hypertension, chronic cough, asthmatic bronchoconstriction, sustained elevated lung volume in chronic obstructive pulmonary disease or in continuous positive-airway-pressure therapy for sleep apnea, metabolic acidosis, and prolonged exposure to hypoxia at high altitude.
منابع مشابه
Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus.
Cranial nerve visceral afferents enter the brain stem to synapse on neurons within the solitary tract nucleus (NTS). The broad heterogeneity of both visceral afferents and NTS neurons makes understanding afferent synaptic transmission particularly challenging. To study a specific subgroup of second-order neurons in medial NTS, we anterogradely labeled arterial baroreceptor afferents of the aort...
متن کاملDifferentiation of autonomic reflex control begins with cellular mechanisms at the first synapse within the nucleus tractus solitarius.
Visceral afferents send information via cranial nerves to the nucleus tractus solitarius (NTS). The NTS is the initial step of information processing that culminates in homeostatic reflex responses. Recent evidence suggests that strong afferent synaptic responses in the NTS are most often modulated by depression and this forms a basic principle of central integration of these autonomic pathways...
متن کاملEffects of Neonatal C-Fiber Depletion on Interaction between Neocortical Short-Term and Long-Term Plasticity
Introduction: The primary somatosensory cortex has an important role in nociceptive sensory-discriminative processing. Altered peripheral inputs produced by deafferentation or by long-term changes in levels of afferent stimulation can result in plasticity of cortex. Capsaicin-induced depletion of C-fiber afferents results in plasticity of the somatosensory system. Plasticity includes short-term...
متن کاملPrimary Afferent Activation of Thermosensitive TRPV1 Triggers Asynchronous Glutamate Release at Central Neurons
TRPV1 receptors feature prominently in nociception of spinal primary afferents but are also expressed in unmyelinated cranial visceral primary afferents linked to homeostatic regulation. Cranial visceral afferents enter the brain at the solitary tract nucleus (NTS) to control the heart, lungs, and other vital organs. Here we identify a role for central TRPV1 in the activity-dependent facilitati...
متن کاملVanilloid-sensitive afferents activate neurons with prominent A-type potassium currents in nucleus tractus solitarius.
Cranial visceral afferents innervate second-order nucleus tractus solitarius (NTS) neurons via myelinated (A-type) and unmyelinated (C-type) axons in the solitary tract (ST). A- and C-type afferents often evoke reflexes with distinct performance differences, especially with regard to their frequency-dependent properties. In horizontal brainstem slices, we used the vanilloid receptor 1 agonist c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008